and "to ensure that we have a healthy, sustainable, and productive R&D establishment—one that educates students, increases human knowledge, strengthens U.S. competitiveness, and contributes to the well-being of the nation and the world."

Under Boehlert’s leadership, the committee has helped to advance many of Cornell’s scientific activities, such as the Grape Genetics Center and the Cornell NanoScale Science and Technology Facility. Last year, Cornell Vice Provost for Physical Sciences and Engineering Joseph A. Burns presented the congressman with a Public Service Award for “committed and sustained effort in support of science.” Burns called Boehlert a great friend of the university, saying, “In many ways he’s been like a caring parent to the sciences … always our cheerleader, helping out when we need assistance but also willing to tell us the facts of life and provide tough-minded advice.”

What issues come before the House Science Committee?
What issues are you currently considering?

The House Science Committee deals with all nonmilitary science activities on the part of the government. We work with NASA, the EPA (Environmental Protection Agency) research programs, along with the National Science Foundation and the National Institute of Standards and Technology.

We’re concerned about the environment and global climate change. We’re dealing with developing a comprehensive energy policy for America. Right now, we don’t have one—the richest, freest nation in the world doesn’t have a comprehensive energy policy! We’re trying to fix that.

We’re dealing with the pressing need to do a better job of K–12 science education, because our youngsters don’t measure up with their counterparts around the world. By the 12th grade, our kids rank 15th and 16th in math and science proficiency. If we’re going to retain our global position, we’ve got to do better. We had a key component in the “No Child Left Behind” legislation—the science and math partnership. It seeks to marry the talents of higher education with the needs of elementary and secondary education, which isn’t measuring up. We want the model of higher education to be used as a guide for K–12.
People want to know about the economy. I think, generally, the American people want us to tell them how to use their tax dollars wisely. Right now, they’re concerned about the price of gasoline. We’re not used to gas prices at the level where they now are, despite the fact that the prices are less than what they are in many foreign capitals. So, the American people say that we should support research that will give the country cheaper gasoline.

How can universities better help the public’s understanding of scientific research and the importance of basic science?

I think we all have a role—corporate America, the universities, the popular press. We’ve got to develop a scientifically literate public and we’ve got a long way to go. Part of the reason is that we haven’t been adequate in our science education or resources from the beginning.

In 1961, the computer really came into popular lexicon. That 1960s computer would have taken up half of this room. Today, my grandson has a handheld device that has greater capability than that huge machine. Why did that happen? It happened because the government made investments.

We’re here to do more of that. Our investment in research and in graduate science education provides many opportunities for undergraduate research. We hope that these opportunities will lure undergraduates into jobs where they’ll invent great things and help the public understand why science is so important.

Sheila Yasmin Marikar ’05